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1. Introduction 

In recent years, learning scientists have taken a keen interest in drawing links between affect and 
learning. Indeed, researchers have documented a dynamic relationship between affect and 
learning in which some affective states are antecedents of learning outcomes, while others are 
consequences of these outcomes (Guia 2013). In addition to the well-documented impact of 
cognition, motivation, discourse, action, and the environment on learning, the assumption that 
affect is inextricably bound to learning is widely supported by various studies (D’Mello 2007). 
For example, the four-quadrant model, which was proposed by Kort (2001), clearly links 
learning success or failure and affective states. During attempts for solving complicated tasks or 
for learning complex material, students may encounter many different emotions (i.e., affective 
states). They might be highly motivated by curiosity or fascination about a new topic at the 
beginning of their task and get puzzled or frustrated about some misconception during further 
processing. An affect-receptive learning system would ideally recognize these states and 
response to students’ emotions to increase motivation and improve learning gains. 

In order to automatically identify and process affect states, such a learning system needs to be 
fed with appropriate affect information. Passive sensors, which capture the physical state or 
behavior of the learner, can be used to gather this information. The affective computing (AC) 
literature shows that, because of their less intrusive character, camera- or microphone-based 
systems are typically preferred to collect students’ emotional information. A video camera might 
capture facial expressions, body posture, and gestures, while a microphone might capture speech 
(Malatesta 2009). However, physiological signals, such as skin temperature and blood volume 
pulse, can be used in AC systems to identify emotions by analyzing the pattern of physiological 
changes. The amount of data that such signals can provide is increasing primarily due to 2 
reasons: 1) the precision and data analysis techniques are improving and 2) sensors are becoming 
smaller and the use of wearable devices is increasing. 

Usually physiological signals are recorded by equipment and techniques that are more intrusive 
than those recording facial and vocal expression. For example, to measure heart rate (HR) or 
heart rate variability (HRV), the subject typically needs to be wired up with wet adhesive 
electrodes on the skin and cables, which are fixed somewhere in the environment. This is often 
perceived as being uncomfortable and unpleasant. These conventional methods for obtaining 
physiological information are still essential and important for medical as well as research 
purposes (Liu 2012). Electrocardiographs (ECGs), which traditionally monitor the electrical 
activity of the heart over a period of time by electrodes attached to the surface of the skin, are 
used in almost every clinical environment. Pulse oximeters, which measure the blood-oxygen 
saturation level and pulse rate by using the light-absorbing characteristics of human blood at 
certain wavelengths, are commonly used during surgery. Capnographs monitor respiratory status 



 
 

 2 

and pulse of patients during anesthesia and intensive care. These methods are proven and well 
established in the clinical field. Nevertheless, in non-clinical fields, they have some 
disadvantages. The main limitation in the use of these conventional methods is obviously their 
requirement of maintaining a direct contact with the surface of the subject’s skin. This is 
especially a disadvantage in learning environments, where such devices may have a negative 
impact on the student’s behavior and the learning process because they are undesirable and 
inconvenient. Therefore, there is an increasing interest in the development and use of non-
contact methods for measuring physiological information.  

One of the most promising low-cost, non-contact, and non-intrusive methods is remote 
photoplethysmographic imaging (iPPG). In this work, an ambient light and webcam-based iPPG 
method is examined for its accuracy, sensitivity, and reliability in measuring human heartbeats. 
The following sections provide a quick overview of the underlying technique of iPPG. 

1.1 Photoplethysmography 

Detection of the cardiovascular pulse wave traveling through the body is referred to as 
plethysmography (plethysmos = increase in Greek) and can be done by means such as variations 
in air pressure, impedance, or strain (Verkruysse et al. 2008). Photoplethysmography (PPG) is an 
optical measurement technique that can be used to detect blood volume changes in the 
microvascular bed of tissue. It has widespread clinical application, with the technology used in 
commercially available medical devices, for example, pulse oximeters, vascular diagnostics, and 
digital beat-to-beat blood pressure measurement systems (Allen 2007). PPG is based on the 
principle that blood absorbs light more than surrounding tissue, so a change in blood volume 
affects transmission or reflectance, correspondingly. The observed pulse wave, the PPG signal 
(blood volume pulse), is caused by the periodic pulsations of arterial blood within the peripheral 
vasculature and is discernible by the dynamic optical absorption that this induces in well-
perfused peripheral tissue (Hayes 1998). A basic form of PPG technology requires only a few 
opto-electronic components: a light source to illuminate the tissue (e.g., skin) and a 
photodetector to measure the small variations in light intensity associated with changes in 
perfusion in the catchment volume (Allen 2007). A typical application of this principle is pulse 
oximetry. 

1.2 Pulse Oximetry 

A pulse oximeter monitors the blood-oxygen saturation level and pulse rate in the human blood 
by using the light-absorbing characteristics of oxyhemoglobin (oxygenated hemoglobin) and 
deoxyhemoglobin (deoxygenated hemoglobin) at certain wavelengths (i.e., 660 nm red and  
940 nm infrared) and the pulsating nature of arterial blood flow. With pulse oximeters, a finger 
or earlobe probe is used: a red light-emitting diode (LED) and an infrared LED are located on 
one side of the probe, and a photodetector is located on the other side (Mengelkoch 1994). The 
photodetector measures the amount of red and infrared light received by the detector and 
calculates the amount absorbed. Oxyhemoglobin absorbs more infrared light components and 
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deoxyhemoglobin more red light components. The blood-oxygen saturation level can then be 
calculated by the comparison of the amounts of red and infrared light received. With each heart 
beat, there is a surge of oxygenated blood and a slight increase of the arterial blood volume. This 
results in more infrared light absorption during the surge and can be represented as a heartbeat 
(Mardirossian 1992). 

1.3 Photoplethysmographic Imaging 

The requirement that PPG methods must maintain direct contact with the skin of the subject 
limits the use of pulse oximeters in certain areas, for example, where special emphasis is placed 
on mobility or skin contact is inappropriate. However, this problem can be solved by using 
remote, non-contact pulse oximetry and iPPG methods. Such methods have been increasingly 
studied in recent years. 

In 2007, Kenneth Humphreys and Tomas Ward presented a camera-based device capable of 
capturing two PPG signals at two different wavelengths simultaneously, in a remote non-contact 
manner. The system comprises a complementary metal-oxide semiconductor (CMOS) camera 
and a dual wavelength array of LEDs (760 and 880 nm). The camera was positioned and focused 
to an area of the volar side of the forearm close to the wrist. The experiment resulted in very 
accurate measurement results when measuring HR; however, it was still dependent on the use of 
special LEDs. In 2008, Verkruysse et al. measured remotely (>1 m) using ambient light instead 
of special LEDs. They used a simple consumer-level digital photo camera in movie mode and 
showed that PPG signals can be remotely measured on the human face without dedicated red and 
infrared light sources. Their results also showed that ambient light photos may be useful for 
medical purposes such as characterization of vascular skin lesions (e.g., port wine stains) and 
remote sensing of vital signs (e.g., heart and respiration rates) for triage or sports purposes. Poh 
et al. implemented an advanced algorithm in 2010 and showed simultaneous assessment of 
multiple people heartbeats with a basic laptop embedded webcam.  

So far studies in this area have been involved either high-performance cameras and/or webcam-
based systems. In 2012, Sun et al. examined the quality of the physiological information that 
could be acquired with these types of camera systems by comparing them to the data that a 
commercial pulse oximeter sensor can provide. The outcome of their experiments shows that the 
result of both the high performance camera and the webcam-based system coincide to a large 
extend with the results of the conventional pulse oximeter. 

2. Methodology 

All of the previously presented methods are based substantially on the same procedure. To 
monitor physiological information, a region of interest (ROI) on the forehead or wrist of the 
subject was recorded with a camera lens under a dedicated light source or ambient light. The 
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subject was asked to keep the examined ROI still to prevent possible motion artifacts. For post-
experiment analysis, the video stream is then stored in an uncompressed AVI format on a 
personal computer (PC). Afterwards, the ROI is isolated from the video data and decomposed 
into the three red, green, blue (RGB) channels using the Matlab software (The Math Works Inc) 
and the Open Computer Vision (OpenCV) library. The color data of each channel are then 
spatially averaged to obtain a reference color value for each frame. For further analysis, 
however, only the green channel was used in previous studies. This is because there is higher 
green light absorption by hemoglobin than for red or blue light. It has been shown in former 
studies that a strong cardiac pulse signal can be isolated only from the green channel (Wim 
Verkruysse, 2008). By calculating an average green value from each frame, a sample signal was 
determined. Followed by a fast Fourier transform (FFT) on the detected signal, a pulse signal 
could eventually be isolated. 

In contrast to the previously presented offline post-processing methods, in this work, a fully 
automatic live-processing method has been applied and tested for its reliability and accuracy. For 
this purpose, a Python application (webcam-pulse-detector) that detects and highlights the HR of 
an individual in real time was used. The code for this application was developed and 
implemented by Tristan Hearn at National Aeronautics and Space Administration (NASA)-
Glenn Research Center in support of OpenMDAO, under the Aeronautical Sciences Project in 
NASA’s Fundamental Aeronautics Program, as well as the Crew State Monitoring Element of 
the Vehicle Systems Safety Technologies Project, in NASA’s Aviation Safety Program (Hearn 
2013). The HR detection algorithm used is inspired by the recent work on Eulerian video 
magnification by Wu et al. (2012) The application uses the OpenCV library to find the location 
of the user’s face and isolate the forehead region. Through spatial decomposition, followed by 
temporal filtering to the frames and then amplifying the resulting signal, the flow of blood as it 
fills the face can be visualized and a HR can be calculated in real time. 

The objective of this study is to test the used algorithm under different conditions on its 
robustness and accuracy compared with an ECG as a gold standard. 

In addition to the assessment of the accuracy, in particular the influence of varying ambient light, 
the distance between the measuring object and camera, as well as the influence of movements of 
the measuring objects on the measurement results is investigated. 

2.1 Materials and Setup 

As a sensor, a simple and low-cost 2-megapixel webcam from Logitech (Logitech 2 MP HD 
Webcam C600) was used and connected via universal serial bus (USB) to a standard laptop 
computer. The default Microsoft webcam drivers were used. The camera was mounted centrally 
on the laptop lid and directed toward the face of the subject. The computer used was an 
Alienware M17x R3 with Intel® Core (TM) i7 2630QM processor with 4 GB of RAM. In the 
system, a Python 2.7 environment with the OpenCV library was provided for Hearn’s webcam-
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pulse-detector application. The source code that has been published by Hearn was only 
minimally modified for the purpose of logging. 

As a reference system and the gold standard, an MP-150 BIOPAC data acquisition system in 
combination with an ECG amplifier module (ECG100C) was used. The ECG100C is a single 
channel, high gain, differential input, biopotential amplifier designed specifically for monitoring 
the heart’s electrical activity. HR data were recorded, processed, and analyzed with the BIOPAC 
software AcqKnowledge. 

Four subjects participated in this study. The subjects’ demographic information is gender  
(3 males, 1 female), age range (28–37 years old), and race/ethnicity (Caucasian and African-
Americans). The experiments were conducted indoors under relatively controlled lighting 
conditions. To simulate good light conditions, the blinds of the room remained opened and a 
large amount of daylight (1200 lx) flooded the room. Nevertheless, the illuminance of ambient 
light on the face of the subject varying between 800 and 1200 lx, depending on whether the sun 
was just obscured by a cloud or not. To simulate low-light conditions of the room, the blinds 
were closed. The luminous intensity of the ambient light on the subject then fell to a range 
between 10 and 50 lx. The illuminances were checked with a standard lux meter for measuring 
illuminances in workplaces before each of the respective experiments. 

2.2 Experimental Protocol 

Before starting the experiment, the participants were informed about the experimental setup and 
procedure, and wired to the ECG module. Three BIOPAC EL503 pre-gelled and medium 
adhesive electrodes were used to attach the wires. The electrodes were fixed in Einthoven’s 
triangle formation to ankles and wrist (3-lead ECG). The participants were asked to sit in front of 
the camera and minimize the movement at the points at which the electrodes had been mounted.  

Each session with the participant comprised 16 trials (or runs), and each run lasted 5 min. For 
each parameter combination, a particular run was performed. In this study, the impact of the 4 
parameters—lighting, motion, distance, and face lock—were examined. For the lighting 
parameter, the room was either darkened by closing the blinds or illuminated with daylight 
through open blinds in combination with normal artificial fluorescent light from the ceiling. For 
the distance parameter, the participants were asked to position themselves either very closely to 
(1.5 ft) or more distantly from (3 ft) the front of the camera. For motion parameter, participants 
were asked to remain as still as possible or simulate a natural movement pattern in front of the 
screen. For the latter, the participants were asked to move their head in smooth and slow 
movements within a maximum angle of 45° in any direction. The requested movements included 
nodding and tilting the head, looking up/down and at the left/right corners of their computer 
screen, and making spontaneous facial expressions. With the motion parameter, the goal was to 
see whether the algorithm was able to balance simple and slow movements or whether these 
slight movements lead to inaccuracies in the measurement. The face lock parameter tested 
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whether a fixed focus on a specific forehead position resulted in better measurement data than 
the automatic face tracking option of the pulse detector application. 

3. Results 

A total of 16 sets of measurements were taken from each participant. The results were 
summarized over all participants and visualized in Bland Altman plots (Bland 1986) to 
graphically evaluate the average discrepancy (bias) between the webcam and ECG method. The 
differences between the two measurements at a given time were plotted against the average 
difference between the two methods. Figure 1 shows an example of 2 of the evaluated 16 plots. 
Table 1 also provides an overview of the results of all 16 experiments. 

 

Fig.1   Bland Altman plots (x-axis: difference of HR measurements between webcam and ECG method; y-axis 
shows differences between both methods). The right plot shows the results under no-light, distance; no-
movement, and no-face-lock condition. The left plot shows the no-light, no-distance, movement, and 
face-lock condition.  

Table 1   Overview of the results of all 16 experiments  

No. L D M FL Mean Difference SD Mean Diff. + 2 SD Mean Diff. - 2 SD
1 0 0 0 0 0.1205 2.8370 5.7946 5.5536
2 0 0 0 1 0.4557 2.5735 4.6913 5.6026
3 0 0 1 0 1.3316 7.8826 14.4336 17.0968
4 0 0 1 1 3.3564 3.8750 4.3936 11.1064
5 0 1 0 0 0.1973 2.2827 4.7627 4.3681
6 0 1 0 1 0.2418 2.2728 4.7875 4.3038
7 0 1 1 0 0.5204 8.4855 17.4914 16.4507
8 0 1 1 1 2.5915 6.3091 10.0267 15.2097
9 1 0 0 0 0.1351 2.8224 5.7799 5.5097

10 1 0 0 1 0.0766 2.7694 5.4623 5.6154
11 1 0 1 0 15.5239 9.9197 4.3155 35.3634
12 1 0 1 1 4.3981 6.4414 8.4847 17.2810
13 1 1 0 0 0.2481 3.6735 7.0990 7.5951
14 1 1 0 1 0.2211 2.9463 6.1138 5.6715
15 1 1 1 0 4.2695 7.0245 9.7794 18.3185
16 1 1 1 1 7.2056 8.9417 10.6778 25.0890  

Note: L = light, D = distance, M = movement, FL = face lock; 0 = no, 1 = yes 
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In the left plot of Fig. 1, experiment no. 5 (see Table 1) is visualized. The conditions for runs of 
experiments of this kind are very low ambient lighting (no ceiling light and window blinds 
closed), the subject was at a distance of 3 ft from the camera, movements were avoided as far as 
possible, and the face lock was disabled. The mean and the standard deviation of the differences 
were determined and the 95% marks of agreement (±1.96) were calculated. The plot on the left 
shows that, for this experiment, the measured differences of the tested method, under the given 
conditions in 95% of all measurements, are no larger than 4.8 bpm. The average bias is only  
0.19 bpm. In contrast, the bias is 3.35 bpm for experiment no. 4 (right plot) and the deviation can 
be as high as 11.1 bpm. The main difference between these two experiments is the movement 
parameter. In experiment no. 4, (natural) movement was requested to a certain extent, whereas in 
experiment 5, movements were suppressed far as possible. 

Table 1 provides an overview of all the runs and over all participants. It can be clearly seen that 
movement is the factor that most influenced the accuracy of the results. Movements by the 
subject during data recording always resulted in large deviations. Further details of the results are 
discussed in Section 4. 

4. Discussion 

In this study, an automatic live-processing method for non-contact, webcam-based HR detection 
has been applied and tested under the conditions of movement, distance, and inadequate ambient 
light. All these conditions have been tested with or without locking the device to focus only on 
the forehead area of the participants. To cover all combinations of these parameters, 16 
experiments were performed and analyzed. For each permutation, participant data were recorded 
for a duration of 5 min. Thus, a total of 320 min of data were collected, analyzed, and visualized. 
The approach was to compare an established and well-proven clinical HR monitoring system 
with a recently implemented HR detection algorithm inspired by the work on Eulerian video 
magnification (Wu 2012). The results, summarized in Table 1, show that reliable results are 
strongly dependent on the right environmental conditions. As can be seen from Table 1, 
movement has the strongest influence on the measurement result. If the ROI is nearly free of 
movement, the discrepancy between the 2 methods is relative low. The mean bias 𝑑̅ in these 
cases was always lower than 0.46 bpm and under optimal conditions was as low as 0.076 bpm. 
This indicates that the 2 applied methods are systematically producing the same results.  

Although, the 95% limits of agreement in these cases show that a deviation of up to 7.5 bpm is 
likely even under good conditions. The mean deviation under the no-movement condition is  
5.57 bpm. Under in motion condition, the results are burdened with large deviations and are 
ambiguous; the tested algorithm mostly failed to deliver a reliable measurement when movement 
was present. The mean bias was always high in these cases and deviation within the limits of 
agreement could be as high as 30 bpm.  
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It can also be seen that the face-lock condition cannot improve the accuracy of the result 
dramatically. This probably stems from the fact that even while trying to remain motionless, 
small uncontrollable movements of the head always affect the measurement. While the ROI is 
fixed in the image, the participant moves the imaged area by uncontrolled movements. This leads 
to motion artifacts that influence the image analysis.  

Compared with the impact of movement, varying the ambient light had only a small influence on 
the measurement results of this study. Neglecting those influenced by movement, we obtained an 
average bias 𝑑̅ of 0.22 bpm for the measurements in the darkened environment and 𝑑̅ = 0.18 bpm 
in daylight. 

Hence, the results of the webcam method tend to be in agreement with the results of the ECG 
method. However, within the 95% limits of agreement, this study show better results in the 
darkened environment (4.77 bpm) than in daylight (5.72 bpm). The same trend can also be seen 
even when the less-precise data in the measurement under motion of the subject are included: 
5.69 bpm in daylight compared with 7.34 bpm in the darkened environment. Basically, better 
results would be expected in good rather than in poor light conditions. The reason for results 
contrary to this expectation is probably due to the special camera technology. The camera model 
used employs a so-called RightLight 2 technology, which automatically adjusts the exposure of 
the image to compensate for dim or poorly lit settings. With this technology, faces stand out from 
the background more clearly, so that the algorithm was able to identify and focus on the ROI 
faster and clearer. 

5. Conclusions 

The abilities of a low-cost, non-contact, webcam-based PPG imaging method for determining 
heart rate were investigated under various environmental conditions. It has been shown that the 
particular movements of the subject have a greater influence on the accuracy of the measurement 
results than the other parameters. However, if one used better methods for motion tracking, these 
inaccuracies would likely be minimized. A modification of the algorithm that implements a 
motion-tracking ability should be considered for a future studies. If movement can be 
suppressed, relatively good results can be obtained with the examined method, both in daylight 
as well as under low-light conditions. The deviations between the reference system and webcam-
based method in these cases were, on average, less than 6 bpm. Furthermore, the effect of 
varying ambient light was tested and was found to have no significant influence on the accuracy 
of the result. Nevertheless, one must consider that the camera used here automatically enhanced 
the exposure of the face of the subject when the ambient lighting decreases.  

While, even under best conditions, the accuracy of the iPPG method is not as good as that of the 
reference ECG device, its non-contact, non-intrusive, and low-cost characteristics still provide a 
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great advantage. If a good estimation of HR data is already sufficient and the trend is more 
interesting than the exact value at a given time, the iPPG method could provide adequate results. 
Taken this into account, this method certainly would be very useful in adaptive learning 
environments. The affective states of the learners could be detected in a wireless manner that 
would not interference with the learning process. Even though this study merely examined the 
measurement of heart rates, it should be kept in mind that by extending the used algorithm, 
parameters such as respiratory rate, HRV, and arterial blood oxygen saturation could be 
measured as well. 
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List of Symbols, Abbreviations, and Acronyms 

AC affective computing  

ARL US Army Research Laboratory  

CMOS complementary metal-oxide semiconductor  

ECG electrocardiograph  

ESEP Engineer and Scientists Exchange Program  

FFT fast Fourier transform  

HR heart rate  

HRED Human Research and Engineering Directorate  

HRV heart rate variability 

iPPG photoplethysmographic imaging  

LED light-emitting diode  

LITE Learning in Intelligent Tutoring Environments  

NASA National Aeronautics and Space Administration  

OpenCV Open Computer Vision  

PC personal computer 

PPG photoplethysmography 

RPG red, green, blue 

STTC Simulation and Training Technology Center  

USB universal serial bus  
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